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Abstract-Rigorous variational upper bounds are formulated for the effective emissivity of an isothermal 
semi-in~nite slab with an arbitrary void-solid dis~~bution. Expficit calculations are given for a model pore 
structure, a semi-infinite slab cut from a bed of randomly placed freely overlapping solid spheres all of the 
same radius. The variational effective emissivity increases linearly with the void fraction, and the slope of 
this increase depends on the particle surface emissivity. The variational upper bound and a recently 
obtained lower, truncated multiple scatt.ering summation bound provide a rigorous squeeze on the effective 
emissivity curves, which tightens with decreasing void fraction. These reciprocal bounds are compared 

with cell model and two-flux bed emissivities as well as available experimental data. 

INTRODUCTION 

To DEVELOP the solution of the engineering heat 
transfer equations, including high temperature radi- 
ation from the external boundary of a randomly dis- 
persed solid bed to the s~roun~ngs, requires a 
knowledge of the effective bed emissivity ccff Radi- 
ative losses from the external boundaries of porous 
solid reactant compacts [1] play an important role in 
the high temperature combustion synthesis of 
advanced ceramic materials. The external cir- 
cumference of the pressed cylindrical pellets used to 
make silicon nitride may reach 4000°C as the reaction 
wave passes. On the other hand, to sustain non-cata- 
lytic, materials processing, gas-solid reactions, such 
as the reduction of ores or the roasting of sulfides, 
depends on a net transfer ofradiant heat to the porous 
outer shell [2] of the reacting particle. The fluid&d 
bed regeneration ]3] of cracking catalyst porous pel- 
lets is another case of a high temperature chemical 
industrial process, where effective radiant transfer 
coefficients would be useful for the selection of opti- 
mum thermal conditions. Etfective bed emissivity 
values are also needed for the design of fluidized bed 
solar collectors [4]. 

In previous theoretical work by others, Brewster [.5, 
61, using the two-flux model, derived an expression 
for the effective bed emissivity of an isothermal bed 
of dispersed solid particles. Tien and Drolen [7] have 
pointed out that the two-flux model can be inaccurate 
in an anisotropically scattering dispersion such as a 
fluid&d bed. Also the bed scattering coefficients used 
by Brewster [6] limit any application to dilute particle 
beds. 

Borodulya et al. [S, 91 in their calculation of E,~ 

t Author to whom correspondence should be addressed. 

for an isothermal bed model the bed structure as a 
stationary cubic lattice of solid spherical particles. In 
order to treat a single unit cell of the lattice as a 
closed system, the cell faces that cut the void space 
are assumed to be black, diffusive planar surfaces. In 
addition approximate network theory [ 101 was used. 
Vortmeyer Ill], in his review of radiation transport 
models in packed solids, has observed that, as a result 
of these approximations, cell models do not include 
long range scattering in a rigorous manner. Borodulya 
et al. [8] generated numerical values of aE,only for two 
specific porosities, a packed (# = 0.4) and expanded 
lattice (# 2 0.95). 

Measurements of high temperature fluidized bed to 
wall radiation is difficult and expensive [12]. Grace 
[ 131 in Handbook of Multipkase Systems does list four 
experimentally measured effective bed emissivities 
along with the corresponding particle emissivities, but 
no information about the spatial particle arrangement 
or bed porosity is given. Grace ]13] has also proposed 
an empirical relationship between the effective emiss- 
ivity of a fluidized bed and the particle emissivity, 
which does not contain the porosity. In general, these 
efforts have not produced a clear, systematic depen- 
dence of E,~ on bed structure. 

Variational principles have been used in het- 
erogeneous, multiphase engineering media to suc- 
cessfully estimate other effective transport coefficients 
and thermodynamic properties [14, 151 and we seek 
here to apply the method to +_ In the next section, 
the fundamenta1 equations for the transport, reflec- 
tion and absorption will be formulated, In the third 
section, we will derive a new, rigorous variational 
upper bound on the effective bed emissivity, whose 
true value is equivalent to the exact solution of the 
random bed radiative heat, effective emissivity 
problem. The variational bounds are expressed in 
terms of certain averages that characterize the essen- 
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NOMENCLATURE 

B(r) radiosity Greek symbols 

,f’(.x, p, 1, 9’) d’pd’q d’q’ the probability TIP*’ 1 variational functional 
that two points r and r' on Z,,, which can rSP the first order variation of P * 
see each one another, the first lying function 
within dx, have a relative position vector E cmissivity 
p lying in dip, and that q falls within V surface unit normal 
d2q and q’ in d’q’ i radiation penetration parameter given in 

h(_u, p, q) d2pd’q the probability that two trial function (27) and Fig. 2(a) 
points that can see one another, the first p displacement vector, r’-r 
point taken on IZ,,t within dx and n,(x) the mean surface area that can be 
second on C,, have a relative position seen from a typical internal point 
vector p lying within d*p, and a unit within d.u 
normal q at the first point is within d’q n,(x) the mean area on C, that can be seen 

K(r', r) d’r differential view factor from r' from an internal surface point within 
to d’r located at r d.u 

m 44/s. 4 x void fraction/surface area per x surface area. 
unit total volume 

P(r). P*(r) surface radiosity minus the 
black surface radiosity, and trial function Subscripts 

u(q) d’q the probability that a point on C,,,, ext solid surface at the edge of the bed 
has 9 falling within d*q int internal solid surface 

x perpendicular distance from the .Y = 0 0 wall of the bed 
plane to a point in the bed. S voiddsolid interface. 

tial features of any arbitrary, random geometry in the 
fourth section. To illustrate the method in a man- 
ageable, yet useful model random bed, a variational 
effective emissivity equation. for a semi-infinite slab 
cut from a bed of randomly placed, freely overlapping 
solid spheres all of the same radius, is presented. From 
an entirely different path summation approach, comp- 
lementary upper and lower bounds [16] have been 
obtained for the same model system. The variational 

for a voids-solid system of arbitrary geometry and a 
uniform temperature T,. 

We will consider the characteristic diameter of the 
solid particles used to construct the void-solid dis- 
tribution as sufficiently larger than the wavelength 
of the thermal radiation [lo], and the characteristic 
distance between neighboring solid particles as small 
enough [S, 91, that the radiative transfer may be 
regarded as occurring due to multiple optical reflec- 

For the formulation 
slab (Fig. 1) of dis- 

principle does give significantly improved upper tions at the void-solid interface. 
bounds, and along with the lower sum bound provides of the equations, a semi-infinite 

a squeeze useful for the prediction of c,, The effective 
emissivity values compare quantitatively with the two- 
flux and cell model, lattice results. The experimental 
data lie within the predictive bounds 

BASIC EQUATIONS 

For high temperature transport processes within 

porous solids, there are a number of instances [I, 2, 
171 where the temperature gradients normal to the 
porous solid external surface can be neglected, and 
the surface radiation term is either locally isothermal 
in the differential element, or is globally isothermal. 
In the second case of a high temperature fluidized bed, 
due to the high degree of solid particle mixing, an 
isothermal bed is often a reasonable first approxi- 
mation. Indeed, for large particle Auidized beds 
(diameter > I mm), isothermal conditions are an 
accurate assumption [13, 18, 191. In this paper 
expressions for the effective emissivity are developed 

FE. I. 

x=0 i 

Semi-infinite slab of randomly overlapping solid 
spheres. 
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tributed solid runs in the direction of a unit vector i 
from x = 0 in the positive direction to infinity. The 

solid is opaque with gray emitting-diffusely reflecting 
surfaces. Kirchhoff’s law is assumed [lo]. The void 
gas is taken to be transparent. Though a specific struc- 
ture is shown in Fig. 1, for the formulation of the 
equations and the variational principle the void-solid 
geometry is arbitrary. The void-solid interface Z, is 
made up of internal surfaces and may in some cases 
include an edge surface at x = 0. The surface & has 
a constant temperature T, and local emissivity a,. Just 
outside the end of the semi-infinite slab, an infinite 
plane wall C,, at temperature To and emissivity E, is 

located. 
The effective bed emissivity E,= is the net result of 

the infinitely many possible exit paths that radiation 
emitted from the void-solid interface (or particle sur- 
face) may take. Each of these paths starts with emis- 
sion from Z:,, the radiation then travels across the void 
space either directly in a single straight line path or in 

some unbroken sequence of straight line segments 
alternating with diffuse surface reflections, and the 
path ends when the radiation passes out to the slab 
edge plane Z:,. In the case of the external edge of a 
porous particle, the edge surface C, represented in 
Fig. 1 may not be present as a solid wall. Then &, 
plays the role of a mathematical surface, across which 
the emitted photon must pass to escape and T,, is 
set to zero in the basic equations. For a gray diffuse 
surface C,, the effective bed emissivity depends solely 
on the bed particle surface emissivity E,, that governs 
the surface interactions, and the statistical properties 
of the bed structure, which determine the geometry of 
the radiation paths. Since our goal is an a priori value 

of the bed emissivity E,~ and since it does not depend 
on the external wall emissivity, we consider the special 
case of C, as a black wall with emissivity E, = 1, set 
the net flux Q of heat into the bed 

Q = WC: - C’), (1) 
and claim no loss in generality in the values of E,~. 
Note that (1) is obtained directly from the definition 
of E,~ along with Kirchhoff’s law [lo], and that 0 is 
the Stefan-Boltzmann constant. 

The radiation is emitted and reflected diffusely 
according to Lambert’s cosine law [lo]. The emitted 
flux depends on the absolute temperature T of the 
surfaces C, or X,, the surface emissivity E, and the 
Stefan-Boltzmann constant cr in the combination 
COT“. Kirchhoff’s law states that the same surface 
element will absorb only the fraction E of incident 
radiation, reflecting the fraction (1 --E). If H rep- 
resents the radiant flux incident on a unit surface of 
&, or &, then for a diffusely reflecting surface the 
radiosity B, the radiation diffusely leaving a unit 
surface, is given by 

B(r) = eaT4+(l --E)H (r on Z, or X,). (2) 

If the surface point r is located on Z, or Z, and r’ 
is also on X:, or X,, the fraction K(r’, r) d’r of radiation 

diffusely distributed, from a unit surface element 
located at r’, that travels a straight line free path, and 
arrives at a second surface element d2r located at r, 

can be used to formulate the radiant exchange 
between these surfaces. Since we are assuming diffuse 
scattering at the wall surfaces, K is given by cosine 
law 

K(r, r’) 

i 

- [3(r) * fMr’) 7Mv4) (if r can see 4 (3) 
= 

0 (otherwise) (4) 

where q(r) and q(r’) are unit normals, respectively, at 
any points r and r’ on the surface of Z, or Z, pointing 
into the void, and p = (r’- r). The symmetry property 

K(r,r’) = K(r’,r) (5) 

holds for all r and r’ in any pair combination of X, or 

&. 
Of the diffuse radiation B(r’) d’r’ leaving d’r’ of Z, 

or Z,, only the fraction B(r’) d’r’K(r’, r) d2r will arrive 

within the element of surface area d*r at r, then the 
total incident flux H(r) to a unit area of surface at r 
is 

d*r’K(r’,r)B(r’) = H(r) (r on E:, or IX,). 

(6) 
From the radiosity definition (2) and equation (6), an 
integral equation for the radiosity is obtained 

B(r) = ~,aTz+(l -E,) 
s 

d*r’K(r’, r)B(r’) 
=,+=a 

(r on &). (7) 

Equation (7) together with the steady state boundary 
condition 

B(r) = CT,” (r on Z,) (8) 

are in principle sufficient to determine B. In practice 
the complex geometry of the surface ZE prevents an 
outright solution. Suppose we are positioned deep 
within the bed at r on Z,. Any radiation from X, at 
To is absorbed before it reaches r, and from r the bed 
conditions appear to be uniform. The surface point at 
r does not receive radiation from C, or from C, sur- 
faces located near x = 0, r only receives radiation 
from bed surfaces at a constant T, and a,, B(r) is 
locally constant, and the radiosity comes out of the 
integral in (7). The remaining integral of K(r’, r) over 
X0 and Z, is unity, and we have 

B(r) = oTf (r on & deep within bed). (9) 

We can define a new variable to describe the radi- 
osity increase (T, > Ts) or decrease (T, < TJ due to 
hot or cold photon radiation from the wall & 

P(r) = B(r)-oTp (10) 

and reformulate (7) and (8) into 
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c 

P(r) = (1 -4 J d’r’K(r’, r)P(r’) 
x:,x + k 

fr on a (11) 

with 

P(r) = oT:-cTe (r on V&J. (12) 

Finally the net flux Q from the wall into the bed is 
simply the radiation emitted by the wall C,, minus the 
radiation emitted or reflected from the bed surfaces 
C, that travel out of the bed to strike C, 

Q = crT,j-c,; 1 
I s 

d*r d”r’K(r, r’)B(r’). (13) 
=,, .? 

Note that a knowledge of B(r) from (I I) and (t2). 
allows first the calculation of Q from (13), then 
through (1) the calculation of ,sCR, and the symmetry 
property (5) has been employed. 

VARIATIONAL FORMULATION 

In this section we will derive a variational upper 
bound on the wall to random bed heat flux and then 
on the effective bed emissivity. The upper bound is 
based on the variational functional 

&I-jP*] = -2 d’r 
s i 

d’r’(1 -z,)K(r’,r)P*(r)P(r’) 
z\ =,, 

- 
s i 

d’r d’r’( 1 --E,)K(r’, r)P*(r)P*(r’) 
% x\ 

+ d’r[P*(r)]’ (14) 

where the trial function P*(r) must satisfy 

P*(r) = P(r) = crT$aTe (r on C,,). (15) 

To show that the term 6T from (14), first order in the 
variation 6P of the trial function P* about P vanishes, 
we write 

;I;,sI- = - 
s s 

d2r d’r’(1 -s,)K(r’,r)hP(r)P(r’) 
x5 Y> 

- 
i s 

d2r d%‘(l -a,)K(r’,r)rSP(r)P(r’) 
z\ =\ 

+ s d%P(r)P(r). (16) 
L 

The symmetry property (5) of K, with the interchange 
of the integration variables r and r’, was used to obtain 
the middle term in the right-hand side of (16). A 
necessary and sufficient condition that the first order 
term X in the variation of (14) vanish is that P in 
equation (16) is the solution of (11). Note also that 
P(r) without the asterisk, does not vary from con- 
dition (I 5), i.e. 

&P(r) = 0 (r on C,). (17) 

To fix a sign on the second order term S’f in the 
variation of (14), we recast (14) in a somewhat ditfer- 
ent form 

1-‘1P *t - I - -- ?I! + A (18) 

where 

C”Y = 

and 

d’r’(l -e,)K(r’. r)P*(r)P(r’) 

(19) 

(20) 

Once again the symmetry condition (5) on K upon 
interchange of r and r’, allow us to relate the [P*(r)]‘K 
and [P*(r’)]*K type terms in (20) so that they cancel 
out to retrieve (14). Note that Y does not produce a 
second order term in 6P. The sense of the inequality 
derives from A and the interpretation of Kd’r as a 
positive fraction, whose total summing d”r over all 
C,+ C, is unity. Since both K and 

are positive, the second order terms in A and r are 
positive and 

I-(P) 6 lTjp*j. (21) 

To interpret T {P), we return to equation (14) and 
substitute equation (11) directly into r{Pj and obtain 

C,r{P; = -(L-C,) d’r 
J ?’ 

d’r’K(r’, r)P(r)P(r”). 
2. z,. 

(22) 

Direct substitution of (I 0) and (I 2) into equation (22) 
gives us 

X 
1 s 

d2r d’r’K(r’,r)-(aTi--aT:‘)(l -eJ 
I:~ =, 

X 
i “i 

d2r d%‘K(r’, r)R(r). (23) 
L, x,> 

Then the first integral in (23) is equal ta the surface 
area C, of the external wall, the second integral upon 
interchange of r and r’ is related to Q by (13) 

rjp) = -(d-:-d-~)~~~-~,~ 

+(aT:-d-s%1--~,)Q, (24) 

with equation (1) for Q the zeroth order term T{P) 
of the variational principle can be written directly in 
terms of the effective bed emissivity, and the sub- 
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stitution of the variational inequality (21) gives the and efficacy of the variational method in the context 
variational principle for the effective bed emissivity of a simpler, yet useful class of structures. 

&,w ,< 1+r{P*}(1-&,)-‘(bT,4-uT~)-*. (25) 
STATISTICAL CHARACTERIZATION 

When the trial function P* is replaced in (25) and 
(14) by the true solution P of (11) and (12) the 
equality is obtained. A complete solution P of the wall 
to bed radiation heat transport problem is required 
for a full knowledge of E,~, any other trial P* gives a 
rigorous upper bound. The variational inequality (25) 
can be rewritten in terms of the functional Y and A 
equations, (19) and (20), respectively 

E,~< 1+(A-2Y)(1-~,)-‘(u~,4-cr2-,4)-*. (26) 

To proceed further with the evaluation of Y and A 
from (19) and (20), we note that in some instances, 
e.g. a slab cut from a porous material or a pressed 
compact, the surface of the random solid may be 
divided into two parts (Fig. I), an external part C,,, 
in contact with the plane x = 0, i.e. the plane surface of 
the solid cut by the x = 0 plane ; and a finite curvature 
internal surface Cint, formed in Fig. 1 by the non- 
overlapped sphere surfaces in contact with the void 
volume, or more generally for any arbitrary random 
void-solid structure, the internal pore wall surfaces of 
the slab. Then if we represent the ratio of the void 
volume within the slab to the internal surface area in 
contact with the void as the length scale m/4, where 
m is usually called the hydraulic average pore 
diameter, the trial function P* we propose for the 
evaluation of Y and A in terms of positive x-direction, 
unit vector i pointing into slab 

P*(r) = [p+wi*g(r)]exp(-Ix/m) (r on Z,), 

(27) 

To obtain an idea of the statistical information 
needed to develop the variational forms, the bounds 
on the effective bed emissivity will be expressed in 
terms of certain averages characterizing a semi-infinite 
slab cut from a statistically homogeneous, isotropic 
random void-solid geometry. We define the void frac- 
tion 4 as the void volume to total volume ratio, the 
average pore diameter m, as four times the void vol- 
ume to internal surface area Ei”t ratio, a,(x) as the 
average area of the internal surface Cint that can be 
seen from a point on the surface Cint lying within the 
infinitesimal slab dx and a,(x) as the average area of 
the external wall X0 that can be seen from a point on 
the surface Zint lying within dx. In addition, we define 
the probability u(q) d21 that an exposed surface point 
in the infinitesimal slab dx has a surface unit normal 
q falling within the element of solid angle d*q, the 
probability f(x, p, q, q’) d3p d*q d*$ that two points 
r and r’ on the internal surface Z&t that can see one 
another, the first point taken within the infinitesimal 
slab dx located at x, have surface unit normals ‘1 and 
9’ falling in the elements of solid angle d*$ and d*q’, 
respectively, and a relative position vector p = r’-r 
lying in the volume element d3p; and the probability 
h(x, p, q) d’p d*q that two points r and r’ that can see 
one another, the first point taken from Xint within dx 
at x and the second on the external plane X0, have a 
relative position vector p lying within the planar area 
element d*p and a unit normal q at r within d’q. 

where p, w and 1 are variational parameters. That the 
trial function of the scattered radiation P*, as defined 
by (9) and (lo), should vanish deep within the slab 
is accomplished by the exponential in (27). Upon the 
selection of the optimum p and o, the trial function 
P* will be positive for a hot wall temperature To > T, 
in excess of the equilibrium value T,. For a cold wall 
T,, < T,, or no wall at all To = 0, the radiosity at the 
solid edge drops below OTT and P* is negative. q is 
again the surface unit normal at the point r on the 
void-solid interface. The wi ‘4 term combined with 
the smooth exponential decay, fluctuates (due to the 
factor wi *TV) with random local structure of the void- 
solid interface. Note on the external surface &, of the 
random solid, the trial function has a constant value 
of (p-w). 

The integrals (19), (20) we must evaluate to obtain 
the variational upper bound (26) on E,~ can be ex- 
pressed in terms of the probabilities defined above. 
From the variational principle forms (14), (IS), (19) 
and noting that C, = C,,, + Cint, we have 

&,A = 
s 

d’r[P*(r)]* - 
s 

d2r 
LX, + L, LX, + I),“, 

X s d*r’(l -s,)K(r’, r)P*(r)P*(r’). (28) 
LX, + P,“, 

A line drawn from any point on Z,,, to a point on Zint 
is always blocked by the solid and the corresponding 
K(r, r’) is zero, hence the double integrals over Zext 
and Zet vanish in (28). Since C,,,/Z, = 1 - 4 and using 
the trial function (27) 

A = (p-w)‘(l-4) 

The variational principle (26) with the trial function 
(27) can be applied to many void-solid structures, e.g. 
fiber mats for ceramic composites, porous solids, or 
fixed bed packing with ZeXt = 0 and Cint = Z,. Some 
of these applications will require computationally 
intense Monte Carlo calculations both to generate the 
beds and to evaluate the variational integrals. It is 
reasonable at this point to examine the characteristics 

+.Z,’ s d*r[p + oi * q(r)]’ exp (-22x/m) 
=,,, 

- (1 -E,)XC, ’ 
s s 

d*r d*r’ 
L, L 

x K(r’, r) b + wi * q(r)] - [p + wi - q(r’)] 

x exp ( -/2x/m - Ix’jm) (29) 
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Then from the forms (3) and (4) of K, and the prob- Again the integration is over all the orientations of 
abilities u and ,f’ defined above, we can rewrite (29) as the unit vector 9, subject to the condition p *g 3 0, 

over all values of p for the entire infinite plane surface 

A = (/--o)*(l-4)+(4&‘m) 
j 

dx 
X3, and over all .Y from 0 to X. 

One very simple model (Fig. 1) for a random dis- 

s x d2tlu(rl)[~+toi.~]*exp(-2i.x/m) 

persion of solid is obtained when a thick slab of total 
volume V is cut from a very large bed of randomly 
placed. freely overlapping solid spheres all of the same 
radius y. All those points within the slab lying on the 
curved surFace of the spheres. but not in the interior 
of one or more overlapping spheres, make up the 
interior surface C,,, of the random suspension. Those 

surface points on the .Y = 0 edge of the slab. i.c. the 
x (l-~,)[~+~i*~][~+fr)i*q’] 

x exp [ - (P~/rn) - (%_r’/m)J. 

Rat cut surface of the sphere solid, make up the edge 

(30) 
surface C,,, and those points on the interior of a sphere 
make up the solid. 

The integrations extend over all orientations of the The statistics of this geometry [14] is sufficiently 

unit vectors $ and 1’ subject to the conditions p * q 3 0 straightforward to allow analytical forms for 4. .s. IH, 

and p * rf d 0, over all values of p for the entire semi- rr,,. n,. II, h and .f: For a large random bed of ovcr- 

infinite slab, and over all values of x from zero to lapping spheres, the probability P, that a volume 1’ is 

infinity. l’rec of sphere centers is 

The Y integral (19) over C, can be split into separate 
integrals for C,,, and &. Upon the substitution of P, = cxp ( - vi”, (34) 

the P(r) function (15) and the trial function (27). the 
integral ( 19) becomes 

where < is the density of sphere centers of the large 
sphere bed per unit total volume. That a point be in 
the void requires sphere centers be cxcludcd from a 
spherical volume of radius q about the point, and the 
probability of finding a point in the void is just the 
porosity C#J 

C/I = exp (-47rq ‘:!3). (35) 

X 

j 
d’r’K(r’.r)[p+wi*q(r)]exp(-ix/tn) (31) 

x,, I 

The total sphere area, overlapped or not, per unit 
total volume is 4nq’i. and the exposed (not over- 
lapped) sphere area .r per unit total volume is 

The entire radiosity flux from d’r on the solid ex- 
ternal surface C,., must cross over to Xc,, the integral s = 47cqygi. (36) 

of K with one point r located on I&,*, but evaluated 

over d’r’ of C, gives unity and 
The average pore diameter m (four times void volume 
divided by the void surface interface arca) is 

Y = (l-C,)(c-s-d-,4) i 
(p-W)(l-4)$X,, ’ 

m = 44,‘~ = (ny’;) ‘_ (37) 

If we consider a point on the exposed surface of the 

X 

s s 

d’r d’r’K(r’, r)[p + wi * q(r)] exp ( - i.x/nz) 
infinitesimal slab dx, since all values of $ are equally 

P =.,, 
likely, the probability u(q) d’q is 

,,I, 

(32) u(q) d2q = d’qi4n. (38) 

Then from the forms (3). (4) of K and the probability 
For two points the first on a sphere surface element 

fl 

exposed or overlapped lying within dx and the second 
somewhere on the plane C,, all values of p and q 

i 

are equally likely and the probability of their falling 

Y = (l-EJ(0-aT:) (p--w)(l-4) within any specified infinitesimals of planar area d’p 
and solid angle d$ is 

The probability h(x, ‘I, p) d2q d’p also requires that 

x [(~.~)(i.~)l(7~~~)1[~+-ti.,lexp (-ix/m) (33) 
the line of sight and both end points of the vector 
p = r’-r be free of obstruction, i.e. the probability 
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that no additional sphere has its center within a right 
circular cylinder about p = f-r capped at both ends 
with a hemisphere of radius q. Noting for p * q < 0 
that the point at r is blocked by its own sphere and 
using equation (34) for the probability that sphere 
centers are excluded from the cylindrical-hemi- 
spherical volume, we have 

h(x, $3 P) d2p d*tl = 

I 

{~,/~~~&)I} exp [- @w3U3) -v*bl 
x P2/dWd2r1/(Wl (if p*tt 2 0) 

0 (otherwise). (39) 

The ratio @,/C, is the probability that two points, 
the first on the surface, exposed or overlapped, of dx 
and the second on E,, can see one another. The aver- 
age entrance area a,(x) that can be seen from a point 
on the internal surface Y& within the infinitesimal slab 
dx may be derived from the normalization of h 

a,(x) = nm(m+x) exp (-x/m). (40) 

To obtain the probability f(x, p, P/, $) d3p d*q d*q’ 
we consider any two sphere surface points, exposed 
or overlapped within the slab, the first selected from 
the interval dx and the second from any other sphere 
with surface in the slab. Again all values of p, q and 
q’ are equally likely, and the probability of falling 
within any specified intervals d3p, d*q and d*q’ is 

d3p d*q d*q 

v 47c 4Z . 

The probability that the two points are exposed and 
can see one another is zero unless p * 1 > 0 and 
p-1’ < 0, since otherwise at least one point will be 
screened from the other by its own sphere. The prob- 
ability that no other sphere has its center within a 
distance q of the line joining the two points, i.e. that 
no sphere center falls within a volume formed by a 
cylinder of length p and radius q, capped at each end 
by a hemisphere also of radius q, is again given by 
(34) ; 

.0x, P, rl. rt’) d3p d*rl d*q’ = 

I 

{sv/~42~i(x)l} exp I-- (4W31/3) - nq*iPl 

x VP/ VI [d29/(4n)l[d2~‘/(4~)1 
(ifp*qaOandp*q’iO) 

0 (otherwise). (41) 

The ratio 4’Oi/(SV) is the probability that two 
exposed or overlapped surface points within the slab, 
the first taken within dx and the second from any 
other sphere with surface in the slab, will be exposed 
and able to see one another, regardless of their relative 
position and the orientation of their normals. Nor- 
malization off then leads to 

0, (x) = &cm * - 2nm(2m + x) exp ( -x/m). (42) 

RESULTS AND DISCUSSION 

When the probability functions (38), (39) and (41) 
for a random bed of overlapping solid spheres are 
substituted into (30) and (33) of inequality (26) and 
the integrals are evaluated, an upper bound on the 
effective bed emissivity E,= is obtained that depends 
on E,, C#J and variational parameters p, o and 1. If 
further the parameters p and w are replaced by forms 
that minimize the upper bound, the resulting upper 
bound becomes the analytical function of 1, E, and 4, 

E,~ < 1+4(1 --E,){G,G~G~-G:G~-G:G~} 

x {4G,G,-G:}-’ (43) 

where 

G2 = - l+$-4&G,(31)-‘, 

G3 = 1-~75+2$Z -2(1 -+,)~(I -G&-‘, 

G4 = 2(1-+)> 

G, = l -$+2#(31)-’ +8(1 -EJ~G,(~L*)-‘, 

G, = l-1-‘ln(l+l), 

and 

G, = :-l-‘+A-*ln(l+l). 

For each surface emissivity E, and void fraction q5, 
a plot of the upper bound (43) vs 1 gives a single 
minimum and associated optimum value of 1. The 
trial function P* is a measure of the radiosity devi- 
ation from the internal thick bed value aTz, due to 
the presence of a hot or cold wall. The exponential 
decay length (m/L) in the trial function (27) is an 
approximate, average distance that wall radiation can 
penetrate the bed before it is absorbed. Optimum 
values of 1 are given vs the void fraction for vari- 
ous values of the surface emissivity in Fig. 2(a). That 
1 is roughly 2 for a nearly black surface (E, N 1.0) is 
consistent with absorption on first surface collision. 
As the emissivity decreases from unity, the 1 optimum 
decreases because increased surface reflection allows 
a deeper penetration into the bed. A very mild vari- 
ation of 1 with the void fraction (7.7% for 4 = 0.99) 
nearly disappears for surface emissivities below 0.1. 

The optimum variational effective bed emissivity E,~ 
is shown in Fig. 2(b) vs the void fraction Q for various 
surface emissivities E,. As the void fraction goes to 
zero the overlapping sphere bed becomes a solid block 
and the bed emissivity ~,~is equal to the surface emiss- 
ivity E,. Of particular interest in Fig. 2(b) is the nearly 
linear relationship between the bed emissivity vari- 
ational result and the void fraction, Borodulya and 
Kovensky [9] have already suggested that the fluidized 
bed emissivities should depend on the void fraction. 
For any E, on Fig. 2(b), a straight line can be drawn 
through the emissivity curve end points at $ = 0 and 
1.0. A measure of its deviation from the variational 
value at any E, and 4, the variational emissivity minus 
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FIG. 2. (a) Optimum values of the parameter I. vs the void 
fraction 4 at various particle surface emissivities E,; (b) 
effective bed emissivity E,~ vs the void fraction C$ for various 
particle surface emissivities E,; (c) the upper sum bound 
(44), lower sum bound (45), variational upper bound (43), 
and midpoint estimate of the effective emissivity cc,,. all at 
unit void fraction (4 + l), vs the solid surface emissivity H,. 
The midpoint estimate is given as a dashed line and the error 
bounds are shaded. Also the straight diagonal line is the exact 

bed emissivity at C$ = 0. 

the straight line value divided by the linear result, is 
usually quite small with a maximum absolute value of 
only 2.1 x 10U410cated at F, = 0.3 and 4 = 0.52. In the 
two limits of perfect absorption E, + 1 and complete 
reflection E, -+ 0, the effective emissivity of a semi- 
infinite random bed or porous slab does not depend 
on the void fraction, and the exact effective emissivity 
values lie, respectively, on the top and bottom hori- 
zontal edges of Fig. 2(b). For E, values between these 
limits, increasing the bed void fraction always 

enhances the effective emissivity. The variational bed 
emissivity E,~. exhibits a mildly positive slope in the 
void fraction, that monotonically increases from zero 
at c, = 0, goes through a maximum value of 0.395 at 
E, = 0.21, and then monotonically decreases back to 
zero at i:, = 1.0. 

Figure 2(c) examines the relationship of the vari- 

ational E:,,~ with the particle surface emissivity I:, for 
fixed void fractions. From Fig. 2(b) for any x,. the 
variational upper bound value of c,,~ is a maximum in 
the dilute bed limit (4 + I), and in Fig. 2(c) a curve 
of these maxima is drawn. Included for comparison 
in Fig. 2(c) are complementary upper and lower 
bounds on c,,, for same random void- -solid geometry 
derived in ref. [16] from truncated summation rep- 
resentations of I:,,~, 

and 

E,, < c,+0.6902(1 -i:,,~$ (44) 

i:,,, 3 c,+0,3804r:,(l -E&b. (4.5) 

As with the variational result, both (44) and (45) have 
a positive void fraction slope which depends only on 
c,, and their largest values, which occur at (p + I. arc 
given in Fig. 2(c). All three expressions (43)-(45) for 
B,,~ decrease linearly with 4 to the diagonal line at 
4 = 0 in Fig. 2(c). At this level of computation, the 
variational upper bound principle is a clear improve- 

ment over the upper sum bound for any C\ or 9. 
However, with improvement the upper sum will give 
the best bounds in the neighborhood of unit surface 
emissivity where the sum is exact. Note also that a 
better upper sum bound is automatically generated 
when an improved lower sum bound is calculated [ Ifi]. 
The variational principle upper and lower sum bounds 
provide a squeeze on the possible values of E,,,. A 
midpoint estimate dashed line and as well as shaded 
error bounds are also included in Fig. 2(c) for the cast 
& --) 1. Note that the maximum error is shown in Fig. 
2(c), as all four curves drop linearly with #I to the 
diagonal C$ = 0 line, the error region shown for c/) + 
1 decreases by a factor (b at any lower void fraction. 

To obtain c,.~ estimates at intermediate C/I from Fig. 
2(c), the vertical distance, measured from the diagonal 
to the curve at a fixed e, and multiplied by 4. must be 
added to the diagonal value I:,. 

Figure 3(a) compares the variational upper (43) 

and lower sum bounds (45) on z:~,~, calculated for a 
semi-infinite slab cut from a bed of randomly placed. 
freely overlapping spheres all of the same radius. to 
effective cmissivity curves for packed and expanded 
cubic lattices of spheres calculated by the cell model 
approximation [8,9], and to bed emissivities obtained 
from the two-flux model [S, 61. At intermediate void 
fractions, Cp - 0.2-0.6, the overlapping sphere bed 
resembles the edge of a pellet of compressed smaller 
particles. For a void fraction of 0.4 in Fig. 3(a), the 
solid variational upper bound and dashed lower 
truncated sum bound lie close enough that a mid- 
curve estimate gives a reasonably good picture of the 
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FIG. 3. (a) Comparison of overlapping sphere effective emiss- 
ivity calculations with cell model and two-flux model cal- 
culations. Solid curves are variational upper bounds (43) for 
ser, vs E, at void fraction I$ + 1, I$ = 0.7 and 4 = 0.4. The 
dashed line curves are truncated sum lower bounds (45) at 
4 + 1 and 4 = 0.4. The dotted curves are all cell model 
calculations [8, 91 done for a cubic lattice of spheres at 
4 3 0.95 and 4 = 0.4. The dashed-dot curve is from the two- 
flux model [5, 61; (b) Comparison of the overlapping sphere 
effective emissivity bounds with a suggested correlation and 
experimental data. Solid curves are the variational upper 
bound (43) for 4 = 0.93 and lower sum bound (45) for 
4 = 0.4. The dashed line is a correlation by Grace [13] and 

the data points are from Botterill [3]. 

a,s curve. The packed cubic lattice, cell model dotted 
curve has the same shape as the estimate from the 
bounds, but lies well above the random sphere 
bounds, The ordered structure of the cubic lattice 
gives a larger E,~ due to the open channels that allow 
deeper radiation penetration. In general, eCff values at 
intermediate void fractions will be sensitive to surface 
structure. At high void fraction (4 -+ 1) sphere over- 
lap becomes unlikely, the C,,, term in both Y and A 
vanish due to the (l-4) factors in (29) and (33), 
and the randomly overlapping sphere model relates 
exactly to a gray gas [lo, 161 or an idealized dilute 
fluidized bed of randomly placed solid spheres. Both 
the expanded cubic lattice (4 > 0.95) cell model dot- 
ted curve and the dotdash two-flux bed emissivity 
curves lie well above the rigorous variational upper 
bound for C#J = 0.4 and 0.7 and are grouped around the 
variational solid curve for qS -+ 1. Hence, as expected, 
both of these approximate model emissivity curves 
apply only to dilute beds. The two-flux curve in Fig. 
3(a) lies rather close to the variational result for 

C$ = 0.95. At E, = 0.01 the two-flux model curve lies 
4.1% below the variational curve for 4 = 0.95, 
approaches and crosses over it at sS = 0.62. The upper 
part of the two-flux curve lies always above, but very 
close to the variational curve for 4 = 0.95 (differing 
by at most 0.07%). Due to the open channels the 
lattice curve is slightly above both of the cor- 
responding random model results. 

We have selected for simplicity a thick slab cut from 
a very large bed of randomly placed, freely over- 
lapping spheres as a model solid dispersion to illus- 
trate the effective bed emissivity variational principle 
and summation lower bound. While this a somewhat 
idealized case to compare with a fluidized bed, the 
calculations do treat multiple reflections within a ran- 
dom particulate media in a rigorous manner and rep- 
resent a gray gas for high void fractions, so it is of 
some interest in Fig. 3(b) to compare the emissivity 
bounds (43) and (45) to a correlation and several 
experimental bed emissivities [3] for fluidized beds. 
While corresponding particle emissivities are listed, 
no void fraction information is available for either the 
correlation or the data. Borodulya and Kovensky [9] 
have suggested a bed porosity range from 0.4 to 0.93 
as appropriate for a fluidized bed. The variational 
upper bound for 0.93 and the lower sum bound for 
0.4 are drawn in Fig. 3(b), respectively, as the extreme 
upper and lower solid curves to bound any exper- 
imental results. The dashed straight line is a well- 
known linear correlation suggested by Grace [ 131 and 
the four data points are from Botterill [3]. The data 
points were given in the literature without tabulated 
void fractions, and as the points lie very close to or 
within the voidage range, agreement is satisfactory. 
Indeed if we select the 4 + 1 variational upper bound, 
all data points lie within the bounds, and we can 
reasonably speculate that the data was from rather 
dilute fluidized beds. 

SUMMARY AND CONCLUSIONS 

A rigorous theory of wall to bed radiative heat 
transfer has been formulated for a semi-infinite, iso- 
thermal void-solid bed. A variational principle has 
been derived, that gives an upper bound in the effective 
bed emissivity. The variational integrals are written in 
terms of the fundamental statistical properties of the 
random solid needed to estimate the effective bed 
emissivity. Explicit results are presented for a semi- 
infinite slab cut from a bed of randomly placed, freely 
overlapping solid spheres, all of the same radius. The 
variational effective emissivity was shown to increase 
linearly with the void fraction, and the slope was 
dependent on the particle surface emissivity. The vari- 
ational upper bound effective emissivity results were 
compared with upper and lower bound truncated 
summation bounds recently obtained for the same 
model structure [16]. While the variational principle 
gives a better upper bound, for improved calculations 
the upper sum will give a better bound near the black 
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surface limit where both sums are exact. The vari- 
ational upper bound and the lower sum bound pro- 
vide a rigorous squeeze on the effective emissivity 
curves, which tightens with decreasing void fraction. 
These reciprocal bounds when compared with cell 
model and two-flux bed emissivities gave qualitative 
insight for any void fraction, but in dilute random 
sphere beds the agreement was quantitative. Results 

also compared favorably with an empirical equation 
and measured experimental bed emissivities. 
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